
CIM – Common Information ModelCIM – Common Information Model

Web-based Enterprise Management

Matthias Hölzer-Klüpfel <mhk@kde.org>

2004-08-22, aKademy, Ludwigsburg

Overview

What's the problem?

Distributed Management Task Force

Common Information Model

Managed Object Format

CIM Core Model

CIM Common Models

Implementing WBEM

Why should we care?

Enterprise Systems Management

What is the problem?

What's the problem?

Enterprise-wide systems management

Many computer systems
Servers (x86, SPARC, etc.)

Desktops

Laptops, PDAs

Different operating systems
UNIX

Linux

even Windows!

A lot of users

A wide range of peripherals
Printers

Routers

Storage devices

Typical situations

Anarchy
use many different systems

use many different tools for administration

=> Chaos

Monarchy
use only one tool for administration

use a small number of systems

=> Dependency

Dictatorship
use only one system

use only one tool

=> Submission

The goal

heterogenous systems
exactly what you need

flexible

unified administration
one tool for one task

integrated user management

keep freedom
a free market for tools

open-source solutions possible

=> open standard for enterprise-wide systems management

Open standards for management

Distributed Management Task Force

DMTF

fdg

Participants:
the usual suspects (Sun, IBM, MS, HP, Intel, Cisco, Novell, Oracle and
many others)

Mission:
„To lead the development of management standards for distributed
desktop, network, enterprise and Internet environments.”

Goals:
define management standards

ensure interoperability of implementations

DMTF-Standards

CIM – Common Information Model
a common data model to represent systems management information
in enterprise computer systems

WBEM – Web-Based Enterprise Management
Unification of enterprise management by using internet technologies

DMI – Desktop Management Interface
framework for asset management

DEN – Directory Enabled Network
building blocks for “intelligent” management by mapping CIM/WBEM to
directories

SMBIOS – System Management BIOS
standard for embedding management information into the system
BIOS

 WBEM

Web-based Enterprise Management

CIM/WBEM – Basic idea

Build a common model of enterprise computer systems
Model hardware and network structure

Model software elements

Model services

Provide a mapping between the model and the real system
Dynamically build instances of the model

Map modifications of the model back to the real system

Access the model via a standard protocol
Mainly used: XML via HTTP

Provide management applications based on the model (not the
system)

Basic Architecture

file:///home/tom/Hacking/cvs/www/areas/events/info/conference2004/slides/Model/Basic_Architecture.wmf

 Modeling Enterprise Systems

The Common Information Model

Common Information Model

An object-oriented modeling approach for computer systems

Basic elements:
CIM Meta model

A “model of the model”

Defines the basic framework

CIM Core model
Abstract elements common to all models

Defines the basic usage of the meta model

CIM Common models
Models for common application domains

CIM Extension models
allows to provide application specific (i.e. proprietary) extensions

All basic elements available as specifications from the DMTF

CIM Meta Model

file:///home/tom/Hacking/cvs/www/areas/events/info/conference2004/slides/Model/CIM_Meta_Schema.wmf

CIM – Basic Elements

NamedElement
Basic element in all CIM models

Simply provides a name for all elements

Convention: All CIM specified elements are prefixed with “CIM_

Schema
A collection of named elements

Used to organize model elements into packages

(Do not confuse with namespaces)

Class
The most central element

Provides the definition of a class

Can build inheritance hierarchies

CIM – Basic Elements (2)

Property
A named value

Defines a typed element

Classes define properties

Properties can be overridden in subclasses

Method
Defines the signature of a class method

Does NOT define any behavior – we are in the model space!

(Behavior can only be defined in an Object Manager)

Indication
Special class that is instantiated when an event happened

CIM - Basic Elements (3)

Association
Associations are special classes

Contains at least two properties that are references

Modeling associations as classes allows to add associations by
introducing new classes

Reference
A special property that “points” to another instance of a class

Qualifier
Represents meta-data

Can be attached to classes, methods, properties

A useful extension mechanism

CIM Classes

Classes are the basic modeling element

Classes consist of
Properties

Methods

Qualifiers

Classes can inherit properties and methods from a superclass

Classes take part in associations

Classes can be instantiated at runtime to build a representation of
the actual system

CIM Properties

Properties have a name and a type

Possible data types:

Datatype Values

[u|s]int[8,16,32,64]
string UCS-2 character string
boolean Boolean value
real[32|64] Floating point value with 32 or 64 bit length
datetime a value containing a date and a time
ref A reference to a CIM class
char16 UCS-2 character

unsigned|signed integer value with 8,16,32 or
64 bit length

CIM Qualifiers

Qualifiers provide meta-data to model elements

Qualifiers can be attached to
Classes (e.g. abstract, association)

Properties (e.g. read-only)

Methods (e.g. static)

Parameters (e.g. in, out)

You can define your own qualifiers

Standard qualifiers that can be attached everywhere:

Name Datatype Default value Explanation
Description String A string describing the meaning of the element.
Displayname String A string that shall be shown to the user instead

of the name of the element.

Class qualifiers

Qualifiers that can be attached to classes:

Name Datatype Default value Explanation
Abstract boolean false

Terminal boolean false Declares that the class can not have subclasses.
Version string

Revision string A string containing the minor version of the class.

Declares that the class is abstract and can not be
instanciated.

A string containing the major version of the class.
Increment the version when incompatible
changes to the class definition have been made.

Property qualifiers

Qualifiers that can be attached to properties:

Name Datatype Default value Explanation
Alias string An alternative name for the property.
Counter boolean false

Key boolean false

Maxlen int NULL

Maxvalue int NULL

Minlen int NULL

Minvalue int NULL

Read boolean false Indicates that the property is readable.
Required boolean false Defines that the property has to have an value that is not NULL.
Static boolean false Declares that this is a class property, not an instance property.
Units string Names the units associated with the value of this property.
Values string[]

Write boolean false Tells that this value can be written by the user of the class.

Indicates that the property is a counter that will not decrease its
value (only if it wraps to zero again). Can be applied to all
unsigned integer values.
Defines this property to be part of the keys that uniquely
identify an instance of the class. Keys are used in the
handle for an instance.
Defines the maximum length of a string property. NULL means no
restriction on the length.
Defines the maximum value of an integer property. NULL means
there is no maximum defined.
Defines the minimum length of a string property. NULL means no
restriction on the length.
Defines the minimum value of an integer property. NULL means
there is no minimum defined.

strings that shall be displayed to the user instead of the integer
value.

Method and parameter qualifiers

Qualifiers that can be attached to a method:

Qualifiers that can be attached to a parameter:

In addition, property qualifiers can be attached to parameters as well

Name Datatype Default value Explanation
Static boolean false Declares that this is a class method, not an instance method.

Name Datatype Default value Explanation
In boolean false
Out boolean false

input.
Indicates that this parameter will be changed by the method
called.

 MOF

Managed Object Format

Managed Object Format

The Managed Object Format (MOF) is used to define the models

MOF is based in the OMG's Interface Description Language (IDL)

MOF describes only interfaces, no behavior

Additionally, MOF can be used to define instances

Do not confuse the DMTF MOF with the OMG one...

MOF can be evaluated by CIMOMs to build up the repository

CIM Schemas (Core & Common Models) are defined in MOF

Class definition

A typical example for a class definition in MOF:

[Description ("A Linux Process")]
class LinuxProcess : CIM_Process
{
 [Description("Send a signal to a running process")]
 string SendSignal([IN] sint32 signal);

 [Description ("Virtual memory size in KBytes")]
 sint32 VirtualMemorySize;

 [Description ("Percentage of CPU used by process")]
 real32 PercentCPU;
};

Association definition

An association is a specialized class:

[Association]
class Test_Association : CIM_Dependency
{

[Override ("Antecedent")]
CIM_A Ref Antecedent;

[Override ("Dependent")]
CIM_B Ref Dependent;

};

Instance definition

MOF can be used to define instances

These instances are “static”, only put into the repository

instance of Linux_Process
{
 VirtualMemorySize = 12032;
 PercentCPU = 10.0;
};

instance CIM_A as $instance_a
{
 some_property = "Some value";
};

instance CIM_B as $instance_b
{

another_property = 5;
};

instance Test_Association
{

Antecedent = $instance_a;
Dependent = $instance_b;

};

Object identity in CIM

Objects in CIM are identical if the key properties are identical

This allows to create references in MOF like this:

instance CIM_A
{
 some_property = "Some value";
};

instance CIM_B
{

another_property = 5;
};

instance Test_Association
{

Antecedent = "CIM_A.some_property = \"Some value\"";
Dependent = "CIM_B.another_property = \"5\"";

};

 CIM Core Model

CIM Core Model

CIM Core Model

The CIM Core Model defines the most basic entities

all other CIM models are based on the Core Model

the Core Model is expected to be very stable

(the Common Models evolve over time)

Core Model classes are hardly ever used directly

Usually, derived classes are defined

CIM Core Model Diagram
file:///home/tom/Hacking/cvs/www/areas/events/info/conference2004/slides/Model/CIM_Core_Model.wmf

Core Model elements

ManagedElement
The root of the CIM class hierarchy

Should be considered to be abstract

defines the basic associations common to all elements in the CIM world:
ManagedElements can have dependencies to all other elements

for each ManagedElement, statistics providing additional information about
the runtime behavior of the element can be defined

ManagedElements can be part of a collection

defines some common properties:
Caption

Description

ManagedSystemElement

The ManagedSystemElement (MSE) represents everything in the
system to be managed

defines additional properties:
Name

Install date

Status

can form component structures (MSEs can be composed of other
MSEs)

Logical / Physical elements

CIM splits system elements into LogicalElements and
PhysicalElements

both are derived from ManageSystemElements

PhysicalElements
occupy physical space

can be touched and seen

have a manufacturer, model number etc.

LogicalElements
define abstract services

e.g. system capabilities, software

PhysicalElements can realize (one or more) LogicalElements, e.g.
multi-purpose cards

Systems and their components

A System is a LogicalElement representing a system, e.g. a
computer system

The most commonly used is the ComputerSystem

A ComputerSystem
provides capabilities

hosts services

aggregates devices

contains software

may be dedicated to a purpose (Router, PrintServer etc.)

all this is expressed by associations to specialized MSEs

CIM Common Models

CIM Common Models define models for typical application areas

Examples:
CIM Device Model

CIM Application Management Model

CIM User & Security Model

CIM Event Model

CIM System Diagnostic Model

CIM Policy Model

CIM Metrics Model

CIM System Diagnostics Model

Models are defined in MOF

Altogether, several hundred classes!

 CIM Common Models

CIM Common Models

CIM Device Model

The Device Model describes functionality of networking and
computing devices

Areas covered:
Processors

Controllers

Ports

Network Adapters

Storage Devices

Memory

Modems

Printers

Sensors

USB devices (Ports, Hubs, Controllers)

CIM Application Management Model

Describes software installation and management

Allows to model:
software installed on a ComputerSystem

discover software that is installed

control software distribution

Basic model elements:
SoftwareProduct

SoftwareFeature

SoftwareElement

CIM User & Security Model

The User and Security Model defines:
Principals, i.e. representation of users in a system

Groups

Accounts

Authentication

Authorization

Roles

CIM Event Model

Describes Indications, signaling events

Indications are published by CIMOMs

Clients may register Subscriptions by creating Filters to select events
and Handlers to process the events

Indications can form a hierarchy

Standard indications include:
Class creation and deletion

Indications provided by the monitored system

Standard handler provides a CIM-XML request via HTTP

 WBEM at runtime

Executing CIM/WBEM

Executing CIM

CIM Standard defines only the models and the interfaces

No “official” standard for the software to bring the models “to life”

De-facto standards established:
CIM Object Manager (CIMOM) is the basic element

Access to the CIMOM via CIM-XML/HTTP

Static information is contained in a repository (database)

System information is obtained via providers

Client applications access CIMOM via quasi-standard APIs (JAVA API
will soon be standardized)

CIM Object Manager
file:///home/tom/Hacking/cvs/www/areas/events/info/conference2004/slides/Model/CIMOM.wmf

Necessary Elements

To implement a CIM-base management system, you need:

A CIM Object Manager
OpenPegasus (Unix, Linux, Win32)

OpenWBEM (Unix, Linux)

Providers, providers, providers
SBLIM (Linux)

Client applications
?

WMI

... or you can use the Windows Management Interface (WMI)

WMI is a complete CIM implementation by Microsoft

available since Windows 95

Providers are available for all system management tasks

Management via “Computer Management” or MMC

Remote management possible

Of course, Microsoft uses DCOM instead of the standard CIM-
XML/HTTP :-((

OpenPegasus

OpenPegasus is developed by The Open Group

Active contributors mainly from
IBM

HP

Veritas

Runs on
Linux, Unix

Windows

Written in C++, provides client API in C++ and JAVA

MIT open source license

OpenWBEM

OpenWBEM is an open-source CIMOM developed by
Caldera (in the good old times...)

Vintella

Novell

Written in C++, very clean C++ API

Runs on
Linux, Unix

Provides provider interfaces in C, C++, Perl

SBLIM

Standards Based Linux Instrumentation for Managebility

IBM-headed project to develop a complete set of providers

Currently available:
Networking

Filesystems

SMBIOS

Syslog

Kernel parameters

NFS

More coming soon...

Client applications

Open-source client applications:
severely missing!

Until now, only developer-targeted tools available:
CIM Navigator

SBLIM Reference Implementation

KDE-CIM-Browser

CimNavigator

http://www.cimnavigator.com

file:///home/tom/Hacking/cvs/www/areas/events/info/conference2004/slides/cimnavigator.
gif

SBLIM Reference Implementation

Management Demo provided by IBM

file:///home/tom/Hacking/cvs/www/areas/events/info/conference2004/slides/sbli
m-sri2.png

file:///home/tom/Hacking/cvs/www/areas/events/info/conference2004/sli
des/sblim-sri.png

KDE-CIM-Browser

http://kde-cim.sourceforge.net

A browser for
CIM Classes

CIM Instances

CIM Namespaces

Right now (version 0.3): only read support

Uses KDE libraries

Makes use of the OpenWBEM-API (C++)

Intention: get familiar with the technology

KDE-CIM-Browser, Connection

file:///home/tom/Hacking/cvs/www/areas/events/info/conference2004/slides/kim1.png

KDE-CIM-Browser, Classview
file:///home/tom/Hacking/cvs/www/areas/events/info/conference2004/slides/kim2.png

KDE-CIM-Browser, Qualifiers
file:///home/tom/Hacking/cvs/www/areas/events/info/conference2004/slides/kim3.png

KDE-CIM-Browser, Instance
file:///home/tom/Hacking/cvs/www/areas/events/info/conference2004/slides/kim4.png

 Conclusion

So what?

Summary, so far

What is interesting about CIM?
Enterprise-management is getting important

Open standard

Open-Source implementations

remote administration built-in

Growing support, especially on Linux

No need to modify the systems

What is problematic about CIM?
provider support still weak

security issues “need to be addressed”

no client applications available

Why should we care?

We can improve the manageability of KDE systems
by supporting the existing initiatives

by making KDE administrable via CIM

=> make KDE ready for the enterprise desktop

We could get rid of the “root modules” in KControl
by cleanly separating the UI and the “core mechanics”

=> get rid of that ugly construction

KDE is good at writing client applications!
improved KDE-CIM-Browser

KDE System Administration console

Other ideas?

Questions?

Ask them now

Mail mhk@kde.org

Come to the BoF, 2004-08-24, 15:00, BoF-Room

